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Abstract

A graph-theoretical model of organic chemistry is proposed. The main idea
behind this model is a molecular graph in the form of a multigraph with loops; its
vertices are evaluated by vertex labels (atomic symbols). The chemical distance
between two graphs from the same family of isomeric graphs is based on the
maximal common subgraph. The produced reaction graph is composed of the
minimal number of edges and/or loops. The reaction distance assigned to the
chemical transformation G, — G, is equal to the minimal number of the so-called
elementary transformations that are necessary for the transformation of G, into
G, . Because these metrics are not “isometric”, the resulting reaction graphs may
depend on the metric used.

1. Introduction

The purpose of the present communication is to suggest and elaborate a
mathematical model of organic chemistry following the concepts and notions of
graph theory [1—6]. The model is focused toward the theory of organic synthesis
design [7—14]. It provides simple, unambiguous and effective mathematical tools
for the formalization of many phenomena of organic chemistry, e.g. structural formulas,
chemical reactions, mechanisms of reactions, and so on. In our previous communica-
tions [15—18], we have devised a mathematical model of organic chemistry based on
a graph-theoretic formalism; the theory developed was fully compatible with the
matrix model of Dugundji and Ugi [8,9]. The present approach extends our initial
ideas on the application of graph theory for the purposes of the formalization of
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organic synthesis design. In particular, two different metrics for the families of isomeric
molecular graphs are suggested. The chemical metric [19,20] based on the concept of
the maximal common subgraph provides reaction graphs [17] that are consistent with
Ugi et al.’s principle of minimal chemical distance [9,21].

The same metric was also simultaneously suggested by Johnson [22,23]. He
introduced this very important concept for the study of structure-activity relation-
ships. The concept of the maximal common subgraph has been advantageously used
by Lynch and Willett [24—27] in a process of looking for the reaction centre assigned
to a chemical reaction which transforms an educt molecule onto a product molecule.
Recently. Ugi et al. [28 —30] have published a series of papers that are also devoted
to the graph-theoretical aspects of their principle of minimal chemical distance.

The second metric, called the reaction metric and initially introduced by
Kota [31,32], enables a formalization of the chemical transformation G, - G,
(G, and G, are molecular graphs) into sequences of elementary transformations
which reflect the mechanism of the given chemical transformation. Both metrics
provide effective rules for constructing the reaction graphs and their decomposition
into mechanisms. In order to keep the theory as simple as possible, we postulate
that the molecules contain an even number of electrons and that all bonds are realized
by two electrons (to some extent this is identical with the restricted chemistry of
Dugundji and Ugi [8]).

2. Basic concepts
A vertex set V ={v vy, ... .uy} is @ nonempty set composed of N vertices
{atoms) v, .U,y .. .. uy- A vocabulary V ={a, a,. ... ,aeq} is a nonempty set com-

posed of Q vertex labels (atomic symbols) o, . @, . . . 0. The vertex set V ismapped
into the vocabulary 'V,

w: V=1 (2.1)

This means that each vertex is uniquely evaluated by a vertex label. An edge 1s an
unordered pair of distinct vertices from the vertex set V. The edge [v;, u,-] is incident
with the vertices v; and v; and connects them. Two distinct edges are adjacent if
they have a vertex in common. Two distinct vertices are adjacent if they are incident
with the same edge. A multiedge of multiplicity ¢ is a set composed of ¢ édges incident
with the same pair of distinct vertices. We shall assume that the multiplicity of a
multiedge is restricted to 1 < r < 3,i.e. at most triple edges can appear in our graph-
theoretical model. An edge set E ={e,, ¢,,. .. ,eM}, where ¢; = [vj, U], associated
with the vertex set V' is a set of M edges ¢, e,, . .., e, with the verticesin V.

A loop is the pair obtained by taking the same vertex twice from the vertex
set V. The loop [v;,v;] is incident with the vertex v; € V. A multiloop of multi-
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plicity u is a set of u loops incident with the same vertex. We shall assume that the
multiplicity u is restricted to 1 <u < 4. A loop set L ={1,,1,,...,lp}, where
l; = [v;, v;], associated with the vertex set ¥ is a set of P loops with the vertices
from V.

Geometrically, the vertex v; € V' is represented by a heavy dot. the edge
[v;, Ui] € E is represented by a continuous line connecting the vertices v; and vj,
and the loop [v;, v;] € L is conventionally represented by a continuous line beginning
and ending at the same vertex v;.

U <= vertexv € V (2.2a)
o o = edge [vV] €EE (2.2b)
Q <= loop [v.v] € L (2.2¢)

v

DEFINITION 2.1

A graph is an ordered triplet
G=(V,E Ly. (2.3)

where V is a vertex set. £ and L are edge and loop sets, respectively, both associated
with the vertex set V. Geometrically, the graph G is represented by heavy dots
{vertices) and lines connecting two distinct vertices (edges) or beginning and ending
at the same vertex (loops).

DEFINITION 2.2

A molecular graph is an ordered 5-tuple
GM = (I‘/, E) L) ‘101 ‘V\[/‘)’ (24)

where V is a vertex set, £ and L are edge and loop sets, respectively, both associated
with the vertex set V,and ¢ is a mapping (2.1) of the vertex set into the vocabulary
of vertex labels. We say that the molecular graph Gy, = (V, E, L, ¢, V') is induced by
the graph G = (V, E, L).

EXAMPLE 2.1

The formaldehyde molecule
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where V ={v,,v,. 05,00, E={e; = [v 03], e, = [v,, 03], €3 = [v3.0,4],
ey = [vg vt L =41, = [v,.0,], 1, = [us.0,]}. The vertex set ¥ is composed
of four vertices. the edge set £ is composed of four edges. where the edges ¢, and ¢,
represent a multiedge of double multiplicity, and the loop set L is composed of two
loops /, and /, which form a multiloop with double multiplicity. This graph induces
the molecular graph G, = (V, E, L, ¢,'1") and the mapping ¢ into the vocabulary V'is
determined as follows:

F

=
e
.
v Vv

From the graph G =(V, E, L) we may form its subgraph, which is also a
graph. by successive applications of one of the following two processes:

(1) Deleting a preselected vertex and all edges/loops that are incident with
the vertex.

(2) Deleting a preselected edge/loop, where the vertices incident with the
edge/loop remain in the graph.

DEFINITION 2.3

A graph G'= (V' E' L") is a subgraph of the graph G = (V. E, L)iff V' C V,
E'C E.and L' C L. If the subgraph was formed from the graph G by making use of
merely the first process (the vertices were deleted), then the subgraph G’ is called
the subgraph induced by the vertex set V'. The property of being the subgraph is
denoted by G'C G.
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DLFINITION 2 4

A molecular graph Gr’w =(V' E' L,¢,V) is a subgraph of the molecular
graph Gy = (V. E, L, 0. V) iff G'=(V,E'\L')C G =(V, E, L), where the graph
G'(G) induces the molecular graph Gy(Gy). and the mapping ¢ V'~ Vis a
restriction of p: ¥V = V.,

A union of two molecular graphs Gy = (V' E L, ¢, V) and Gy
=(V" E" L" ¢" V) determined over disjoint vertex sets is defined by

Gu=GyYGy=(V=V'UV' E=EUE"L=LUL"¢V), (25)

where the mapping ¢ is

¢'(v) for veEV’ (2.6a)

o(v) = .,
e"(v) for vEV . (2.6b)

The resulting molecular graph is termed disconnected, and its components are Gy and
Gy . which are also the subgraphs of Gy. In the same way, a union of two graphs G'
and G" can also be determined; the mappings ¢, ¢". ¢ are now ignored.

One of the most fundamental notions of organic chemistry is the isomerism.
Two or more molecules are isomeric iff they contain the same number of atoms of
the same elements and the same number of valence electrons, but differ in the
structural arrangement of the atoms. For graphs and molecular graphs, this notion can
be simply represented.

DEFINITION 2.5

Two graphs G, = (V,, E|, L,)and G, = (V,, E,, L,)are isomeric, (G, = G,),
iff

V1 =1V, (2.7a)
|Ey L+ 1Ly 1= 1Byl + 11,1 | (2.7b)

where | X| denotes the number of elements (cardinality ) of the set X.

In order to specify this definition of the isomerism for molecular graphs, we
have to ensure the above condition that they contain the same number of vertices
(atoms) of the same element [15].

DEFINITION 2.6

Two vertex sets ¥, ={v,,v,.....oytand ¥, ={v}.v},....vp} with
mappings ¢} =V, >V and ¢, : V, = V, respectively, are similar iff there exists a
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one-to-one correspondence  between them, Y : ¥, = ¥, which conserves the evalu-
ation of vertices, i.e. Yy (v;) = v; implies ¢, (v;) = ¢2(u;).

DEFINITION 2.7

Twomolecular graphs Gy ; = (V}, By, Ly, o, V) and Gy 5 = (1, By, Ly, 9,.7)
are isomeric, (Gy | = Gy ,). iff the graphs Gy = (V}, £y, L)) and G, = (V,,E,, Ly)
inducing these molecular graphs are isomeric and the vertex sets I} and ¥, are similar.

EXAMPLE 222
Let us consider the hydroxycarbene molecule

H—C—0—H

This molecule is isomeric with the formaldehyde molecule presented in example 2.1.
The hydroxycarbene molecule is represented by the graph

vy vz‘ : ;V3 VL

where the mapping ¢, is

The graph from example 2.1 is isomeric with the present graph. The mapping ¢ is
determined as follows

We see that mapping ¥ conserves the evaluation of vertices by atomic symbols.
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Let usstudy amolecular graph Gy = (V, E, L, o, V'). We assign to this molecular
graph the so-called aromic set A ={a,, a,,... .45} composed of lexicographically
ordered atomic symbols (ordered, for example, with respect to atomic numbers)
a4, < a, <...<ay of vertices from V., formally as(Gy) =A4. If two molecular
graphs Gy and Gy are isomeric. Gy & Gy . then they have the same atomic sets
as(Gy ) = as(Gy ). For instance, the isomeric molecular graphs considered in examples
2.1 and 2.2 have the same atomic sets 4 = {H, H, C, O}.

DETINITION 2 8

Twographs G, = (V}, E,, L)and G, = (V,, E,, L,) are isomorphic, (G, = G,).
iff there exists such one-to-one mapping : ¥, = ¥, which induces two one-to-one
mappings x: £, > £, and x':L, = L, that conserve the incidences of edges and
loops. respectively.

DLEFINITION 29

Two molecular graphs Gy = (Vi £, Ly, ¢, V)and Gy 2 = (Vy, E5, Ly, 0,.1)
are isomorphic, (GM’1 = Gy, ). iffthegraphs G, = (V}, E,, L, )and G, = (V,, E,, L,)
inducing these molecular graphs are isomorphic and the mapping ¢ (from definition 2.8)
induces the similarity of the vertex sets ¥, and V.

How can one interpret simply the notion of isomerism for molecular graphs?
Loosely speaking. and with some simplification, the isomorphic molecular graphs
Gy and Gy , differ only in the indexing of their vertices (atoms). Since the physical
and chemical ’properties of a molecule are invariant with respect to the indexing of
its atoms, isomorphic molecular graphs are physically and chemically equivalent. A
molecule can be represented by many different molecular graphs, but they must be
strictly isomorphic. This means that the structural formulas (or molecular graphs)
represent a molecule up to isomorphism.

The concept of isomerism determined over a universe of graphs can be formally
considered as a realization of an “equivalence” relation between abstract elements.
For instance, one can verify simply that the following three laws are satisfied:

(1) Reflexive law, G = G.
(2) Symmetric law, if G, = G,, then G, = G,.
(3) Transitive law,if G; = G, and G, = G4, then G, = G,.

The same three laws are also satisfied for the notion of isomorphism. The universe
of graphs can be decomposed onto disjoint families of mutually isomeric graphs.
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DEFINITION 2.10

The family of isomeric graphs ;7}10 q s composed of all possible nonisomorphic
graphs with p vertices and g edges and loops,

Fq={G=(V,E,L); VI=p and |El+I|Ll=¢q}. (2.8)

The above definition can be simply extended for molecular graphs.

DEFINITION 2.11

The family Fpq(A) of molecular graphs is composed of all possible non-
isomorphic molecular graphs with the same atomic set A4 and with p vertices and
q-edges and loops.

FpglA) = {G=(WV,E L);IVI=pand |EI+I|LI=gq, and as(Gy)=4}. (2.9)

EXAMPLE 2.2

The family 7, , of isomeric graphs composed of two vertices and two edges
and/or loops contains the following four graphs:

(G} (G,) {G,) (G,)

This family can be specified for the atomic set 4 = X, Y in the form of the family
F,,,(A) of isomeric molecular graphs.

B P

(G, ) (G, ,) (G 5)
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3. Chemical distance

For the mathematical modelling of organic chemistry, the notion of chemical
distance was initially introduced by Dugundji and Ugi [8,9]. They defined the
chemical distance between two molecules (molecular graphs) as the Hamming norm
of the difference in their adjacency matrices. In our approach [14—18], based on
graph theory, this representation of chemical distance cannot be used; an unambigu-
ous determination of the adjacency matrix requires an indexing of the vertices.

The notion of chemical distance will be determined for graphs. Its specification
for molecular graphs is obvious and straightforws 1. Let us consider two isomeric
graphs G, and G,,a common subgraph of these graphsisa graph G which is simultane-
ously isomorphic to the subgraphs G; C G, and G, C G,,thatis, G = G, ~ G;. A
maximal common subgraph of G, and G,, denoted by G, N G,, is the common
subgraph which contains the largest possible number of edges and loops.

EXAMPLE 3.1

Consider the following two graphs:

{G4) (G,)

The maximal common subgraph is

s S

(6, N G,)

This graph is isomorphic to two subgraphs of G, and two subgraphs of G, :

S

(G}) (GY)

L LL
- D

(G}) (63)
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FXAMPLE 3.2

The maximal common subgraph of molecular graphs from examples 2.1 and

(S8
to
=

V1 V2 V3
with mapping ¢(v,) =H, ¢(v,) =C. and ¢(v5)=0. This means, loosely speaking.
that the maximal common substructure (fragment) of formaldehyde and hydroxy-
carbene molecules is

H—C—0

DEFFINITION 3.1

The chemical distance [19,20] between two 1somcrlc graphs G, = (¥, £, L))
and G, =(V,, E,, L,) with maximal common subgraph G = G, NGy,=(V,.En L)
is givcn by

d(G,, Gy) = 1E 1+ |Ey | + L1+ 1L,y = 21Eyl = 21L,,1. (3.1)

The chemical distance between a pair of isomeric graphs corresponds to the
number of edges and loops that cannot be matched in the construction of a maximal
common subgraph. It enables one to “measure” the similarity (or dissimilarity) of
two different isomeric graphs: its increasing value indicates that the graphs are more
dissimilar. We emphasize that the chemical distance for two isomeric molecular graphs
is determined in a quite similar way to definition 3.1 for graphs.

EXAMPLE 3.3

Evaluate the chemical distance for G, and G, from example 3.1. These graphs
are isomeric, i.e. |E |+ 1L, [=1E,1+1L,1=6+1 =7. The maximal common sub-
graph satisfies |£,1= 5 and |L,,| = 1. Hence,from example 3.1. the chemical distance
isd=2.

The chemical distance between molecular graphs of formaldehyde and
hydroxycarbene for their maximal common subgraph specified in example 3.2is d = 4.

THEOREM 3.1

The chemical distance d(G,, G, ) for isomeric graphs from the family Fpqisa
metric [19,20] ,and the following three properties are satisfied:

(1) Positive semidefiniteness,

d(G,,G,) =20 (=0only for G, = G,). (3.2a)
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(2) Symmetry,
d(G,, G,) = d(G,, Gy). (3.2b)
3) Triangle inequality,
d(G,, G,) +d(G,, G4) = d(G,. G;). (3.2¢)
The first two properties of the chemical distance result immediately from
definition 3.1. The triangle inequality (3.2c) was proved using two different
approaches [19,20] ; here we present a simplified version of one of them [20].
Let us define, for a pair of isomeric graphs G, =(V,, E,, L,) and G,
=(V,, E,, L,), the following auxiliary function:
8(Gy,Gy) = |E 1= |E I+ 1L 1= IL,l. (3.3)
This expresses the number of edges and/or loops that must be deleted from G, to

obtain a subgraph which is isomorphic to the maximal common subgraph G, N G,.
The distance (3.1) is rewritten in a manifestly symmetric form (cf. (3.2b)):

d(Gy, G,) = 8(G,, G,) + g(G,, Gy) . (3.4)

The following simple properties of the function g are easily proved:

(1) G, 2G,=g(G,,G,) = |EN+ 1L 1= 1E,| = 1L,] (3.5a)
(2)  8(G,,G,) =g(G,,G, NG,) (3.5b)
3) Gy CG, =G, G,y <gG,,Gy) (3.5¢)
4) Gy 2G,=g(G,,Gy) <g(G,, Gy) (3.54)
(5) G,CG,CG,y=g(G,G,) + 8(G,, Gy) = g(G,, Gy) (3.5e)
6) g(G,,G,) =g(G, N Gy, G,). (3.5f)

All these relations have a very simple “heuristic” set-theoretical interpretation:
the graphs G, and G, are interpreted as sets; their maximal common subgraph may
then be formally expressed as an intersection of "sets” G, and G,,

(3.6)

6,1 G,
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The function g(G,, G,) is equal to the cardinality of “subset” G, -G, NG,
(unshaded area in G,). This simple set-theoretical approach will be applied to prove
property (3.5f):its Venn diagram has the form

The function g(G,, G,) is equal to the cardinality of the single- and double-
shaded area, whereas the function g(G, N G;, G,) is equal to the cardinality of the
double-shaded area.and thus the inequality (3.5f) is satisfied.

In order to prove the triangle inequality (3.2¢). it is fully sufficient to verify
the following two independent inequalities:

8(G,, G,) + g(G,. Gy) = g(G,, G,) (3.8a)
8(G,, Gy) + 8(G;, G,y) = g(Gy, Gy ). (3.8b)

Using properties (3.5a—f). the left-hand side of (3.8a) is successively rewritten as
follows:

g(Gy, Gy) +8(G,, G3) 2 g(G, G, N Gy) +g(Gy N G, Gy)

=g(G,, G, NGy +eG, NG, G N G,N Gy)

8(G,. G, NG, N Gy) > g(G,, G, N Gy)

g(G), G;), (3.9)

where G; N G, N G; is a maximal common subgraph of G,, G, and G,. The second
inequality (3.8b) is verified in a similar way. Thus, we have proved the triangle in-
equality (3.2¢).

We should stress that the chemical distance was defined via the notion of the
maximal common subgraph. Hence, in order to evaluate the chemical distance
d(G,, G,) we have to know their maximal common subgraph G, N G,. McGregor [33]
has suggested a back-track searching algorithm for the construction of the maximal
common subgraph of two graphs. His method involves, at worst, N! back-track searches.
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For molecular graphs, where the vertices are evaluated by chemical symbols, this
approach could be substantially accelerated by making use of some effective heuristics.

Ugi et al. [21] have solved the same problem reformulated in the algebraic
form. Let 4, and A4, be the adjacency matrices of the graphs G, and G, . respectively:
the chemical distance between these graphs may then be alternatively defined as:

d(G,, G,) = min | 4, — PTA, Pl (3.10)

where A}l = EingGij] is the Hamming norm of the symmetric matrix 4 = (a,.j) and
P is the so-called permutation matrix. Ugi et al. [21] showed that the minimization of
(3.10) corresponds to an integer programming problem.

Assuming that the graphs are taken from the same family 7,, of isomeric
graphs. then the following theorem is satisfied:

THEOREM 32

The chemical distance d(G,. G, ) for Gy, G, € J,, is even and bounded from
above.,

d(G,,G,) = 2k < 2q. (3.11)
where k =0.1.2,... 4.

Since G, = (V}, E,, L,). G, = (V,, E,, L,)are taken from the same family ‘.’?pq,
[E VI L = 1B+ 1L, = g.
Introducing this relation into (3.1). we obtain
d(G,,G,) = 2(q — 1E, 1 = 1L,
as was to be proved.
For a fixed family Fnq of isomeric graphs, we construct the so-called
graph of chemical distances, denoted by 4CD Its vertex set is identified with the
family Fpq- €. each vertex of ".@;D corresponds formally to some graph of the

family Fpq- Two distinct vertices are connected by an edge iff the chemical distance
between the corresponding graphs is equal to 2.

EXAMPLL 3.4

The matrix of chemical distances between graphs from the family %, , (see
example 2.3) is a symmetric matrix with diagonal entries equal to zero,
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The graph of chemical distances constructed over the family %, , contains four
vertices and four edges.
G3

G, G, 6.

We see. for instance, that the chemical distance between graphs G, and G, is equal
to twice their graph distance, where by the term “graph distance” [1] we understand
the length (number of edges) of a minimal path between the vertices.

THEOREM 33

The chemical distance between graphs from the family
the graph distance between them in the graph ‘.‘3;?.

Fpq 18 equal to twice

Let us consider. for simplicity, a pair of graphs Gy, G, € ¥, with chemical
distance d(G,, G,) = 4. This means that two edge/loops in G, as well as in G, should
be removed to get a subgraph isomorphic to their maximal common subgraph G, N G,.
From the graphs G, and G, we form another graph, denoted by G, € ‘.jipq, in such a
way that we shift an edge/loop (which does not belong to G, N G, but belongs
cither to G, or to G, )to a common “area” represented by G, N G, . That is, we have
constructed a graph G4 € :Ipq such that d(G,, G3) = d(G,, G;) = 2. In other words.
in the family .7, , there should exist a path from G, to G, via the graph G;. As a
by-product of these considerations is the following theorem.

THEORIEM 3 4

The necessary and sufficient condition for a triple of graphs G,. G,, G; € ¥,
that the relation

d(G,, G,) + d(G,. G,) = d(G,, G) (3.12)

is fulfilled is that the graph G, lies on a minimal path connecting the graphs G, and
G, in (9’;‘,';).

This theorem can be understood as an appendage to the triange inequality
(3.2¢) in theorem 3.1.
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31 REACTION GRAPH

The graph-theoretical approach is able to formulate a simple theory for
describing chemical reactions [17]. Let us consider two graphs G, = (V,, E,, L, )and
G, =(V;, £y, Ly) from the family %, . We introduce a nonsymmetric relation
between these graphs called the chemical transformation,

G, =G, . (3.13)
where G, (G,)iscalled the educt (product) graph. Let G, N G, be a maximal common
subgraph of G, and G,. The graphs may then be expressed as a “union” of two

edge/loop disjoint subgraphs,

G, =G, UG/ (3.14a)

G,=G, UG, (3.14b)

where the subgraphs G| C G, and G35 C G, are isomorphic to G, N G,. ic.
G, = G, =~ G, N G,.Schematically,

G,

[#%)
wn
—

G,

We say that the transformation (3.13) changes the subgraph G| into the subgraph G,.
whereas the subgraphs G| and G, isomorphic to G, N G, remain intact. Hence, the
transformation (3.13) can be simplified as follows:

G, = G, , (3.16)

where we have omitted intact subgraphs of G, and (,. Let us consider a graph
G, =(V, =V, E,, L), constructed over the same vertex set as the graph
G, = (V,, E,, L;)and, moreover, isomorphic to G;.ie. G, = G;.

DEFINITION 3.2

The reaction graph [17] G, assigned to the transformation (3.16) is an
ordered 5-tuple:
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Gp = (Vg =V Eg. L v 4=101h). (3.17a)
Ep =L UL, , (3.17b)
Ly=1UT} . (3.17¢)

The mapping Y : £y U Ly, = {—1, 1} evaluates the edges and loops by integers 1.

-1 (fore € £))
y{e) = ~, (3.18)
+1  (fore € E))
-1 (forl€ L)) v
v = ~, - (3.19)
+1 (forl€Tl)

The notion of the reaction graph (assigned to a fixed transformation G, = G5)
enables us to “algebraicize " the transformation as follows:

Gi+Gy=G) =G, (3.20)

[N

The binary operation ‘+’ is interpreted in the framework of a set-theoretical formalism
as the symmetric difference [17] 4 + B = (4\B) U (B\A4),

A+B={x;(x EAAXEB)V(XEAAXE B)}. (3.21)

Applying this operation, the edge and loop sets of 52 are

~

E, =E +Ey, L,=L+Ly. (3.22)

In the reaction graph G, those edges/loops that are cancelled (formed) are evaluated
by =1 (+1).

DEFINITION 3.3

Tworeaction graphs G, = (Vy, Ey, Ly, ¥, {~1.1})and Gy = (Vg, Eg, Ly, V!
{=1,1}) are isomorphic iff there exists such a one-to-one mapping w: ¥V = Vj that
induces two one-to-one mappings x: £y = E;{ and x': Ly ~ L;{ that conserve the
incidences of edges and loops and their evaluation by = 1.

Let us consider two pairs G, G, and G4, G, of graphs. both taken from the
same family Fpq of isomeric graphs. The graphs are related by two chemical trans-

formations



V. Kvasnicka, J. Pospichal, Two metrics for a graph 177

G, =G, Gy,=G,. | (3.23)

Applying the above theory, we assign to these transformations the reaction graphs
Gy and Gy, respectively. If the reaction graphs are isomorphic, then we say that the
chemical transformations (3.23) are described by the same reaction pattern uniquely
represented (up to the isomorphism) by a reaction graph. This property substantially
increases the effectiveness of reaction graphs as a tool for classifying chemical reactions
in organic chemistry. In particular, thousands of generic and named organic reactions
are represented by just a few dozen reaction graphs.

I’XAMPLE 3.6

The Eschenmoser fragmentation [34] of 1,9-epoxy-2-diazo-10-methyl
[4,4,0] bicyclodecane is

— (1) e
® O | &
N=N (o]

Removing the intact “environment”, we get the basic skeleton of the fragmentation

10

101

Fs

graphically represented by

QQ}U@UO@O

Next, we remove untouched edges and loops,

>~UOUQ==~ Iuo UQ——-

(6;) (G3)

Unifying the two sides of this pattern in a reaction graph, we arrive at a graph-theoretical
representation of the Eschenmoser fragmentation
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The reaction graph G, assigned to the chemical transformation (3.13) is simply
related to the chemical distance between its entries G, and G, .

THEOREM 35

The chemical distance between two isomeric graphs that are related by a
chemical transformation G, = G, with assigned reaction graph Gy is determined by:

d(G,, G,) = |Egl+

Lgl. (3.24)

This theorem immediately follows from definition 3.2 of the reaction graph and,
moreover, it has a very interesting chemical interpretation. One of the first heuristic rules
of organic chemistry is the so-called principle of minimal structural change [35,36].
This states that in the course of a chemical transformation G, = G,, the minimal
number of edges/loops is created and/or annihilated in the educt graph G, to form
the product graph G,. It implies that a reaction graph G assigned to the chemical
transformation should be minimal with respect to the number of its edges and loops.

IbﬂRl + [LRI = min . (325)

This requirement is automatically satisfied due to the definition of the reaction
graph based on the notion of a maximal common subgraph. Ugi et al. [8,21] sum-
marized the above property at the principle of minimal chemical distance as a very
effective heuristic rule for the construction of reaction matrices.

4, Reaction distance

In the preceding section we have constructed the reaction graph G for a
chemical transformation G, = G, on the basis of the maximal common subgraph
G, N G,. There exists an alternative possibility [31,32] for constructing this reaction
graph, namely, to require that the chemical transformation is composed of a minimal
number of the so-called elementary chemical transformations (or simply, elementary
transformations), the number of which determines a reaction distance between the
graphs G, and G, . and this distance induces a new metric for a fixed family of isomeric
graphs. :

Let us study the graph G = (V, E, L) taken from the family I’»?pq. We shall
introduce two types of elementary transformations of the educt graph G into a
product graph G' = (V, E', L") with the same correspondence to the family Fpq-

(1) The graph G contains the edge {Ui,U]-]. The elementary chemical trans-
formation ay; “dissociates” the edge [v;.v;] onaloop [v;,v;], schematically
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! ‘

o &ij M
6 — o (4.1a)

‘Vj <)

\/j
The resulting product graph G’, isomorphic to a graph from the family Fpq- has

edge and loop sets determined as follows:

E'=E-{[v.v1}, L'=1 U {[v.v]} . (4.1b)

(2) The graph G contains the loop [v;,v;]. The elementary chemical trans-

formation B;; “associates” the loop [v;,v;] on an edge [v;, v;], schematically

SO j (4.22)
G i [ G’
'vj 'V,‘

The resulting product graph G', isomorphic to a graph from the family Fpq» has
edge and loop sets determined as follows:

E':EU{{ui,u].]},L'=L—{[vi,vi]} . (4.2b)

The elementary transformation Bi]. may be formally treated as a retrotransformation
with respect to the elementary tranformation 0.

The two types of elementary transformations introduced above are simply
visualized by the following reaction graphs:

*

._'__Q {elementary transformation ozij) (4.3a)

i v

Q—i——; (elementary transformation 61.]-) (4.3b)

i

Hence, the chemical distance between G and G’ for an arbitrary elementary trans-
formation is d(G, G') = 2. A reverse property is not obeyed; d(G, G') = 2 does not
imply that there exists an elementary transformation ¢ = a, § such that G £¢'

In a similar way as was done in section 3, we construct for a fixed family % q
of isomeric graphs the so-called graph of reaction distances, denoted by ‘55(? . Its
vertex set is again identified with the family %,,. Two distinct vertices (corresponding
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to nonisomorphic graphs G, G' € I?JPQ) are connected by an edge if there exists an
elementary transformation £ = o, f such that G L¢.

EXAMPLIE 411

Let us study the graphs from 7%, , (cf. example 2.3). For the following pairs
of graphs there exist elementary transformations such that a member of the given
pair is transformed into the other member of the same pair.

For the other remaining possible pairs of graphs from .#, , there do not exist such
elementary transformations. The graph of reaction distances constructed over the
family %, , is

DEFINITION 4.1

The reaction distance between two graphs G, G' € Fpq-denoted by D(G, G"),
is equal to the graph distance between them in the graph "g;{‘?.

FEXAMPLE 422

The matrix D = (D(G,, G)) of the reaction distance between graphs from 7, ,

can be simply constructed from the (Qg“z) presented in example 4.1,

0122
f1011
D=V121 902

2120
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The chemical transformation G, ® G, may be decomposed into two elementary
transformations with an “intermediate” corresponding to the graph G,,

Ly oLyy
O, — O
v, vy vy v, v,

(Gy) (G,) (6]

This means that the reaction distance between G, and G, is D(G,, G,) =2, in
accordance with the graph 6[2“% presented in example 4.1. The graph distance between
vertices 1 and 3 is equal to 2.

THEOREM 4.1

The reaction distance D(G,, G,) is a metric and the following three properties
are satisfied:

(i) Positive semidefiniteness

D(G,,G,) =0 (=0only for G, ~ G,). (4.4a)

(i) Symmetry
D(G,, G;) = D(G,, Gy) . (4.4b)

(iii) Triangle inequality
D(G,, G,) + D(G,, G;) 2 D(G,, G4) . (4.4c)

The equality holds iff the graph G, lies on the minimal path from G, to G5 in ‘Q;}g’.

All these properties immediately follow from the definition of reaction distance
as a graph distance in the graph ‘5?}2 .
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41. ILLUSTRATIVE EXAMPLE

The above theory will be illustrated for the family 773 3 composed of fourteen

graphs:

o Q—o——o o——Q——o @ °
(Gy)

(Gz) (63) (Gl. )

.. = ¥ 00V U= .

(Gy) {Gg) (G,) (Gg) @5)
u . 8 ——s % . ) 8 Q °
(G {Gyo) (Gyy) (Gy)
VAN
(G, (6]

Let us consider, for instance, the graph G,. We apply all admissible elementary trans-
formations,

Lz ( )
O__‘ m— (~GE)
Vi V2oV

[+
L (~G.)
oL
2> Vo
ol
é L] ("GB)

This means that in the graph @I;Ig the vertex v, (assigned to G, ) is adjacent to the
vertices v, , U3, Vs, and vg. Applying a similar procedure for all graphs from the family
F3,3, we arrive at the following graph of reaction distances
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(4.6)

13

From this graph one may simply construct reaction distances between all graphs

from 75 5, eg. D(G,y, Gy4) = 5. Let usstudy the chemical transformation Gy, = Gy,.

In accordance with the graph ‘é?%, we obtain the following pattern:

G
/ \G
1
6 /
., == G., == 0,

\ (4.7a)
{EDUCT) \

m’GM

Gy == 0,
/ (PRODUCT)
G12 \
Gs

It will be much more instructive if the symbols are replaced by their diagrammatic
representations:
= .

/ \:
R N\ A
\ . /8._.-:9 — (4.7b)
87

The decomposition of G,; = G,, into five elementary transformations is

Gu=Gi3=Gg =G =G6y=Gu
G = Gi3= Gy =G = G6y,= Gy
G = Gi3= G = G = G, = G
Gii= Gi3= G = Gy = Gy = Gua
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Applying chemical terminology, the transformation G, = G,, has four different
mechanisms manifested by the sequences of elementary transformations cand §. The
reaction graph corresponding to all four mechanisms is

The same reaction graph is obtained on the basis of the maximal common subgraph.
We can analyze the transformation G, = G, in the same way. The reaction
distance is D(G,, G,,) =4 and the assigned pattern of elementary transformation is

(4.8a)

0

\ )
12
SN .
1
N e
2
=
diagrammatically

A Sq 0.
< el o0 . \X — e (48b)

>

The possible mechanisms for G, = G, are

Gs = Gg = Gi3= G, = Gyo
Gs = Gy = Gy = Gy = Gyo
Gy = Gs= Gy = G, = Gyo
Gs=Gsy= G, =G, = Gy .
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The reaction graph of G, = G,,, constructed on the basis of the maximal common

subgraph G, N Gy,.1s

with a chemical distance d(G,, G,,) = 4. The reaction graph constructed on the basis

of the above mechanisms is
é%:s = E +

+

which does not correspond to the mentioned chemical distance d(G,, G,,) = 4. We
emphasize that the reaction graph constructed on the basis of the maximal common
subgraph is decomposed into six elementary transformations, the result of which
again is not compatible with the reaction distance D(G,, G,,) = 4. Summarizing
these observations, the chemical and reaction distances are not “isometric”, there-
fore they may provide different reaction graphs.

42, BILATERAL APPROACH FOR EVALUATION OF REACTION DISTANCE

The chemical distance between two isomeric graphs was defined with the
help of their maximal common subgraph. This definition makes it possible, in principle,
to evaluate the chemical distances for an arbitrary pair of isomeric graphs. The
reaction distance is defined as the graph distance in the graph of reaction distances.
Therefore, in order to evaluate the reaction distance we have to know in advance
the graph of reaction distances for a given family of isomeric graphs. Unfortunately,
its explicit construction is possible only for relatively small families of Fpq- 1. for
small values of the integers p and ¢ (e.g. for p, ¢ = 10, a construction of the graph
‘Qgé) is a hopeless task). Therefore, it is very important to have an approach which
does not require a knowledge of the whole graph of reaction distances but only a
part of it, i.e. the subgraph which contains all the minimal paths for a preselected
pair of graphs from Fpq- Recently, Ugi and Fontain [37] suggested the so-called
bilateral approach for the construction of all possible minimal paths between a fixed
pair of graphs. We shall generalize this approach for the evaluation of reaction distances.

Let G, =(V,,E,,L,) and G, =(V,,E,,L,) be a pair of graphs from the
family Fpq- If these graphs are isomorphic, then their reaction distance is equal to
zero, D(G,, G,) = 0 (cf. eq. (4.4a)). Therefore, we shall assume that the graphs G,
and G, are nonisomorphic. Let us construct the left and right sets of graphs £, = {G,}
and ®, = {G,}. The graph G, € L, is transformed by all admissible elementary
transformations £ = a, 8, and a new left set £, is formed from all the nonisomorphic
resulting graphs produced. In the kth step (if k > 2), the left set £, is formed only
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from those graphs that are nonisomofphic with the graphs from £,__, . In a completely
similar way, the right sets &, &, . &,. .. ., ®, are formed. Schematically

) (M
Jo 1 ~J GL
P . £
I *_
io e * = Ry
e ' 1
&£ b -
1 iz 02_2

Let us assume that we have constructed the sets £, and &, (where either k =/ or
I £1). If these sets contain graphs that are isomorphic, formally £, N & # @.
schematically

~
|- -
/ s~ . \
> >
P . s e ./‘/
AN Lo
¥ R
k=1 \_/ t
£,

then the reaction distance is d(G,, G,) =k + /. If this is not the case, we continue
the process of construction of new left and right sets of graphs.

This bilateral approach for the evaluation of the reaction distance may be
summarized in the form of the following algorithm.

ALGORITHM 4.1

Step 1. (Initialization). Input of graphs G, and G,;
ki=1:=0; L£,:={G,}; Ry :=1{G,};

Step2. k:=k+1;

£, := {nonisomorphic graphs constructed by elementary transformations of
the graphs from £, _, }:

if k>2,then £, := L, — {graphs isomorphic with graphs from £, _,};

if £, N &, # @, then go to step 4;
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Step3. =1+ 1:

®, := {nonisomorphic graphs constructed by elementary transformations of
the graphs from &,_,

if 7 > 2, then & := & — graphs isomorphic with graphs from ®,_, }:

if £, N K, # O, then go to step 4, else go to step 2;

Step 4. Reaction distance := k + /;
Step 5. End of algorithm.

As a by-product of this bilateral approach for the evaluation of reaction
distances between isomeric graphs G, and G,, is the possibility to construct from
the sets £, L,..... L and R . &, ..... ®, all possible mechanisms of the chemical

transformation G, = G, (or retrotransformation G, = G,).

EXAMPLE 4.3

Apply the algorithm 4.1 for the evaluation of reaction distance between
graphs G, and G,, from example 4.1.

Stepl. k:=0,1:=0, £,:={G,}. &;:={G,}.

Step2. k:=1, L :={Gg}. LN Ry = .

Step3. I:=1, R, :=1{G,.G,}. LN &R, = D.

Step2. k:=2, L,:={G,, Gy, G5}, L,N R, = .

Step3. 1:=2, 8, :={G,, G5, Gy, G5, G}, LN R, =1{G,, Gy, G5t # ©.
Step4. D(G,, Gyp)i=2 +2.

Schematically, the above succession of steps can be illustrated by

¢
2 g paee)

From this scheme one can simply construct all possible mechanisms of the trans-
formations G, = G,, (cf. egs. (4 .9a—d)).
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4 CONSTRUCTION OF PREDLCESSORS AND SUCCESSORS IFOR A GRAPH

(95]

A simple modification of the bilateral approach for the evaluation of reaction
distances provides the so-called monolateral approach for the construction of all
possible successors or predecessors for a given graph. Let G =(V, E, L) € qu be a
fixed graph. Successive applications of admissible elementary transformations a and/or
B give all possible graphs (successors) with unit reaction distance from the graph G.
From the first set of graphs (successors) we construct the next graphs, which are
classified as successors of successors; their reaction distance from the graph G is 2.
This recurrent process is continued until the prescribed reaction distance between
G and its constructed successors is achieved. If we change the elementary transforma-
tions used to the corresponding retrotransformations, then the above procedure
gives all predecessors of the given graph G with reaction distances bounded from
above by the prescribed maximal reaction distance.

Let us turn our attention to a precise formulation of the monolateral approach
for the construction of successors of the fixed graph G. First, we construct the set
U = {GO}. Applying all admissible elementary transformations « and/or B. we
construct from the graph G all its first successors; their nonisomorphic representatives
form the set #,. From the graphs of ;. we construct by all admissible elementary
transformations the next set ‘s, . where this set does not contain the graphs isomorphic
with graphs from ‘7. This procedure is continued until we achieve the set '(fkmax‘
where k is the prescribed maximal reaction distance. The graphs from 7, have the

max
reaction distance 7 from the starting graph G.

ALGORITHM 4.2

Step 1. (Initialization). Input of graph G, k_,. :
k:=0: 7%= G :
Step2. k:=k+1;
‘s := {nonisomorphic graphs constructed by elementary transformations of
the graphs from © D=1 b
if kK > 2, then 4 := s, — {graphs isomorphic with graphs from &, _,}:
Step3. Itk <k then go to step 2.

max’

Step 4. End of algorithm.

The method of constructing all possible successors of the given graph G with
the specified maximum reaction distance is schematically illustrated as follows:
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N
) e
| ]
.// e
CaE AR
D,
k 2, _/
2

mox

EXAMPLLE 4.4

Construct all possible successors of the graph G, from (4.5) in the framework
of the whole family 775 ;. Successive applications of admissible elementary trans-
formations to the graph G, provide

v

4

A

&3=2

5C

In this case, k_,. =5 and we have constructed all possible successors of the graph
G, in the family %; ;. For instance, the graph G, has a successor G, where
D(G,. G,,) = 3; decomposition of the transformation G, = G,, into a sequence of
elementary transformations gives

Ga= Gy = Gi3= Gy .

Reversing the procedure. we get another scheme of all possible predecessors of G, in
the whole family %, 5:
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For instance, the graph G, may be “prepared” from the graph G,, by the following
sequence of elementary transformations:

Gy =G =06g=0Gy .

5. Discussion

We have elaborated the graph-theoretical model of organic chemistry. This
model is based on the concept of a molecular graph (a pseudomultigraph with vertices
evaluated by the atomic symbols). Two different distances between the graphs were
defined; both these distances induce a metric over the family Fnq of isomeric graphs.
First, the chemical distance based on the maximal common subgraph is closely related
to Ugi et al.’s [8,9] matrix model of organic chemistry and their principle of minimal
chemical distance. The resulting reaction graph assigned to the chemical transformation
G=0C"is composed of a minimal number of edges and/or loops. Second, the reaction
distance provides a very efficient method for the construction of mechanisms of
chemical transformations. Unfortunately, these metrics are not “isometric”, and
therefore the reaction graphs constructed by making use of them may be, in general,
different. The suggested graph-theoretical model of organic chemistry gives a very
simple and transparcent theoretical tool for the formal simulation of the organic
chemistry in which all irrelevant details and exclusions are suppressed at minimum.
It offers formal notions and concepts for an unambiguous description of computer
algorithms for organic synthesis design based on the mechanisms of chemical reactions
(the so-called second-generation programs, cf. ref. [8]).

A deep gap between our formal look at chemical reactions and their physical
content based on the topology of potential surfaces may be abridged, likely, by an
approach of Mezey [38,39]. He started, as was mentioned, from the potential surface
of a molecular system (in general, this is the same for all isomeric molecules). The
topology of the potential surface determines (its minima, maxima, and saddle points)
the so-called reaction network. This concept is closely related to our graph of chemical
and/or reaction distances, and determines possible reaction products (intermediates)
that are neighbouring the preselected educt molecular structure on the potential
surface.
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