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Abstract 

A graph-theoretical model of organic chemistry is proposed. The main idea 
behind this model is a molecular graph in the form of a multigraph with loops; its 
vertices are evaluated by vertex labels (atomic symbols). The chemical distance 
between two graphs from the same family of isomeric graphs is based on the 
maximal common subgraph. The produced reaction graph is composed of the 
minimal number of edges and/or loops. The reaction distance assigned to the 
chemical transformation G~ -, G 2 is equal to the minimal number of the so-called 
elementary transformations that are necessary for the transformation of G~ into 
G 2 . Because these metrics are not "isometric", the resulting reaction graphs may 
depend on the metric used. 

1. Introduction 

The purpose of  the present communica t ion  is to suggest and elaborate a 

mathemat ical  model o f  organic chemistry following the concepts  and notions of  

graph theory [ 1 - 6 ] .  The model is focused toward the theory of  organic synthesis 

design [ 7 - 1 4 ] .  It provides simple, unambiguous and effective mathemat ica l  tools 

for the formalization of  many  phenomena  oforganic  chemistry,  e.g. structural formulas,  

chemical reactions, mechanisms of  reactions, and so on. In our previous communica-  

tions [ 1 5 - 1 8 ] ,  we have devised a mathemat ical  model  o f  organic chemistry based on 

a graph-theoret ic  formalism; the theory developed was fully compat ible  with the 

matr ix  model  of  Dugundji and Ugi [8 ,9 ] .  The present approach extends our initial 

ideas on the application o f  graph theory for the purposes of  the formalization of  
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organic synthesis design. In particular, two different metrics for the families ofisomeric 
molecular graphs are suggested. The chemical metric [19,20] based on the concept of 
the maßmal common subgraph provides reaction graphs [17] that are consistent with 
Ugi et at.'s principle of minimal chemical distance [9,21]. 

The same metric was also simultaneously suggested by Johnson [22,23]. He 
introduced this very important concept for the study of structure-activity relation- 
ships. The concept of the maximal common subgraph has been advantageously used 
by Lynch and Willett [24-27]  in a process of looking for the reaction centre assigned 
to a ch'emical reaction which transforms an educt molecule ontõ a product molecule. 
Recently, Ugi et al. [28-30]  have published a series of papers that are also devoted 
to the graph-theoretical aspects of their principle of minimal chemical distance. 

The second metric, called the reaction metric and initially introduced by 
Koea [31,32], enables a formalization of the chemical transformation G 1 -+ G, 
( G  1 and G 2 are molecular graphs) into sequences of elementary transformations 
which reflect the mechanism of the given chemical transformation. Both metrics 
provide effective rules for constructing the reaction graphs and their de,zomposition 
into mechanisms. In order to keep the theory as simple as possible, we postulate 
that the molecules contain an even number of electrons and that all bonds are realized 
by two electrons (to some extent this is identical with the restricted chemistry of 
Dugundji and Ugi [8] ). 

2. Basic concepts 

A vertex set V = {u~,/9 2 . . . . .  uN} is a nonempty set composed of N vertices 
(atoms) /91,/92 . . . . .  /gx A vocäbulaIT 1'= {c~/, o~2 , . .  , c~q} is a nonempty set com- 
posed of Q vertc, x labels (atomic symbols) cq. c~ 2 . . . .  , C~Q. The vertex set V i s m a p p e d  
into the vocabulary q/, 

B: V-+ 1". (2.1) 

This means that each vertex is uniquely evaluated by a vertex label. An edge is an 
unordered pair of distinct vertices from the vertex set V. The edge [/9i, uj] is incident  

with the vertices u i and uj and connects them. Two distinct edges are adjacent  if 
they have a vertex in common. Two distinct vertices are adjacent if they are incident 
with the same edge. A mult iedge of multiplicity t is a set composed of t èdges incident 
with the same pair of distinct vertices. We shall assume that the multiplicity of a 
multiedge is restricted to 1 ~< t ~< 3, i.e. at most triple edges can appear in our grapt» 
theoretical model. An edge set E = { q ,  e 2 . . . . .  ecu }, where e i = [vj, Vk] , associated 
with the vertex set Vis a set o f M  edges e~, e 2 . . . . .  e M with the vertices in V. 

A loop is the pair obtained by taking the same vertex twice from the vertex 
set V. The loop [v i, vi] is incident  with the vertex v i E V. A mul t i loop  of multi- 
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plicity u is a set of  u loops incident with the same vertex. We shall assume that the 
multiplicity u is restricted to 1 ~< u < 4. A loop set L = {l 1, 1 2 , . .  ,lp}, where 
l i = [t)j, oj], associated with the vertex set V is a set of P loops with the vertices 
from V. 

Geometrically, the vertex u i E V is represented by a h e a w  dot, the edge 
[ui, ui] C E is represented by a continuous line connecting the vertices v i and oj, 
and the loop [vi, vi] E L is conventionally represented by a continuous line beginning 
and ending at the same vertex v r 

b ~==> vertex u E V (2.2a) 

v v '  ¢=" edge [v ,v ' ]  Œ E (2.2b) 

¢=' loop [ v, v] E L 
V 

(2.2c) 

DEFINITION 2.1 

A graph is an ordered triplet 

G = (V, E, L ) ,  (2.3) 

where V is a vertex set. E and L are edge and loop sets, respectively, both associated 
with the vertex set V. Geometrically, the graph G is represented by heavy dots 
(vertices) and lines connecting two distinct vertices (edges) or beginning and ending 
at the same vertex (loops). 

DEFINITION 2.2 

A molecular graph is an ordered 5-tuple 

G M = (V, E, L, ¢, F ) ,  (12.4) 

where V is a vertex set, E and L are edge and loop sets, respectively, both associated 
with the vertex set V, and ~0 is a mapping (2.1) of the vertex set into the vocabulary 'I ~ 
of vertex labels. We say that the molecular graph G M = (V, E, L, ~o,T') is induced by 
the graph G = (V, E, L). 

EXAMPLE 2.1 

The formaldehyde molecule 
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14 \ 
C = ö  

/ 
rq 

is represented by the graph G = (V, E, L) 

V 2 

where V = / q ,  u2. u3, u4}, E = te 1 = [u 1, v3], e2 : [u2, u31, e3 = [u3, u41, 
4' 4 = [ V 3 , V 4 ]  } , L - - - { l l  = [ v 4 , u 4 ] ,  12 = [ 0 4 ' 0 4 ] } "  The vertex set V is composed 
of four vertices, the edge set E is composed of four edges, where the edges e 3 and e 4 
represent a multiedge of double muttiplicity, and the loop set L is composed of two 
loops l~ and l z which form a multiloop with double multiplicity. This graph induces 
the molecular graph G M = (V, E, L, ¢,1") and the mapping¢ into the vocabulary l/' is 
determined as follows: 

v qY 

From the graph G = (V ,E ,L)  we may form its subgraph, which is also a 
graph, by successive applications of one of the following two processes: 

(1) Deleting a preselected vertex and all edges/loops that are incident with 
the vertex. 

(2)  Delet ing a preselected edge/loop, where the vertices incident with the 
edge/loop remain in the graph. 

DEFINITION « .a 

A graph G' = (V', E', L') is a subgraph of the graph G = (V. E, L) iff V' C_ V, 
E' C E. and L' _C L. If the subgraph was formed from the graph G by making use of 
merely the first process (the vertices were deleted), then the subgraph G' is called 
the subgraph induced by the vertex set V'. The property of being the subgraph is 
denoted by G' C G. 



V. Kvasni~ka, J. Pospi'chal, Two metrics for a graph 165 

DEFINITION 2.4 

I I ? 

A molecular graph G M = (V', E ,  L ,  va',']/') is a subgraph of the molecular 
graph G M = ( V , E , L ,  Va, I:') iff G' = ( V ' , E ' , L ' ) C  G = ( V , E , L ) ,  where the graph 
G'(G) induces the molecular graph G~I(GM) , and the mapping va" V ' - + q / i s  a 
restriction of va : V -+ 1,. 

t t !  

A union of two molecular graphs G M = (V ' ,E ' ,L ' ,Va ' ,V)  and G M 
= (V", E", L", va", V) determined over disjoint vertex sets is defined by 

' ~" " E' E" L' " GM = GM LA GM = (K = V' U V , E = t..) ~ , L = U L , va, '1/"), (2.5) 

where the mapping va is 

va'(v) 

va(v) = 
va"(v) 

for v E V' (2.6a) 

for v E V" (2.6b) 

The resulting molecular graph is termed disconnected, and its components are G~4 and 
Gr~1. which are also the subgraphs of  GM. In the same way, a union of two graphs G' 
and G" can also be determined, the mappings va', va", va are now ignored. 

One of the most fundamental notions of  organic chemistry is the isomerism. 
Two or more molecules are isomeric iff they contain the same number of atoms of 
the same elements and the same number of valence electrons, but differ in the 
structural arrangement of the atoms. For graphs and molecular graphs, this notion can 
be simply represented. 

DEFINITION 2.5 

Two graphs G 1 = (V1, El,  L1) and G 2 = (V2, E2, Lz )a re  isomeric, (G 1 ~ G2), 
iff 

[V 11 = IV21 (2.7a) 

IEll + ILll  = lE21 + IL21 , (2.7b) 

where I XI denotes the number of elements (cardinality) of  the set X. 

In order to specify this definition of  the isomerism for molecular graphs, we 
have to ensure the above condition that they contain the same number of vertices 
(atoms) of  the same element [15]. 

DEVINITION 2.6 

Two vertex sets ~~ ={vx ,v  2 . . . .  ,vN}and t~ = { v [ , v ~ , . . . , v l '  v}wi th  
mappings ~o~ = 1~~ ~ ~'V and ~o 2 : ~~ ~ ]:; respectively, are similar iff there exists a 
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one- to-one correspondence th between them, ~ :  ~~ --* I/2, which conserves the evalu- 

ation of  vertices, i.e. q;(ui) = ö) implies ~01 (u i) = ~02 (uß). 

DEFINITION 2.7 

Twomolecular  graphs GM, 1 = ( l~,  El, L1, ~ßl , l")  and GM, 2 = (J~, E 2 , L a , ~P2 ;l/) 
are isomeric, (GM, 1 ~ GM,2), iff  the graphs G 1 = (I t , E 1 , L 1 ) and G 2 = (V 2, E 2, L 2) 
inducing these mólecular graphs are isomeric and the vertex sets V~ and V z are similar. 

EXAMPLE 2.2 

Let us consider the hydroxycarber~e molecule 

H--~--õ--H 

This molecule is isomeric with the formaldehyde molecule presented in example 2.1. 

The hydroxycarbene molecule is represented by the graph 

where the mapping ~P2 is 

V lr 

The graph from example 2.1 is isomeric with the present graph. The mapping ~ is 
determined as follows 

,; 

V~ V~ 

We see that mapping ~ conserves the evaluation of  vertices by atomic symbols. 
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Let us study a molecular graph GM = (V, E, L, ~, l,'). We assign to this molecular 
graph the so-called atomic set A = {a~, a 2 . . . . .  a N} composed of lexicographically 
ordered atomic symbols (ordered, for example, with respect to atomic numbers) 
a I ~ a 2 ~ . . .  ~ a N of vertices from I/', formally aS(GM) = A. If two molecular 

t 

graphs GM and G~a are isomeric, G M ~ GM, then they have the same atomic sets 

aS(GM ) = as(G~l ). For instance, the isomeric molecular graphs considered in examples 
2.1 and 2.2 have the same atomic setsA = {H, H, C, O}. 

DEFINITION 2.8 

Twographs G l = (I71, E 1 , L 1 ) and G 2 = (~'2, Es,  L2) are isomolT)hic, (G 1 ~ -  G2), 
iff there exists such one-to-one mapping ~b:F~ -+ V 2 which induces two one-to-one 
mappings X : E: -+ E 2 and X': L~ -+ L 2 that conserve the incidences of  edges and 
loops, respectively. 

DEFINITION 2.9 

Two molecular graphs GM, 1 = (VI, El,  LI,  ~Ol, } ' )and GM, 2 = (f"2, Es,  L2, g~s,'l') 
are isomoJBhic, (GM, 1 ~ GM,2 ) , i f f the graphs G 1 = (l,~, El,  L: )and G 2 = (V2, E2, Ls) 
inducing these molecular graphs are isolnorphic and the mapping ~ (from definition 2.8 ) 
induces the similarity of  the vertex sets V: and V 2 . 

How can one interpret simply the notion of  isomerism for molecular graphs? 
Loosely speaking, and with some simplification, the isomorphic molecular graphs 
GM, 1 and GM, 2 differ only in the indexing of  their vertices (atoms). Since the physical 
and chemical properties of  a molecule are invariant with respect to the indexing of 
its atoms, isomorphic molecular graphs are physically and chemically equivalent. A 
molecule can be represented by many different molecular graphs, but they must be 
strictly isomorphic. This means that the structural formulas (or molecular graphs) 
represent a molecule up to isomorphism. 

The concept of  isomerism determined over a universe of  graphs can be formally 
considered as a realization of  an "equivalence" relation between abstract elements. 
For instance, one can verify simply that the following three laws are satisfied: 

(1) Reflexive law, G m G. 

(2) Symmetric law, if G 1 ~ G2, then G s ~ G 1 . 

(3) Transitive law, i f  G 1 ~ G 2 and G s ~ Ga, then G 1 ~- G 3 . 

The same three laws are also satisfied for the notion of  isomorphism. The universe 
of  graphs can be decomposed onto disjoint families of mutually isomeric graphs. 
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DEFINITION 2.10 

The Jamily of isomeric graphs ?~pq is composed of all possible nonisomorphic 
graphs with p vertices and q edges and loops, 

@ q = { G = ( V , E , L ) ;  I V I = p  and I Æ I + I L I - - q } .  (2.8) 

The above definition can be simply extended for molecular graphs. 

DEFINITION 2.11 

The Cätnil3, ?~pq(A ) of molecular graphs is composed of all possible non- 
isomorphic molecular graphs with the same atomic set A and with p vertices and 
q.edges and loops, 

?~pq(A)={G=(V,E,L); V l = p  and I E l + l L l = q ,  and aS(GM)=A}.  (2.9) 

EXAMPLE 2.2 

The family i~2, 2 of 
and/or loops contains the following four graphs: 

(G I ) IG 2 ) G 3 ) 

This family can be specified for the atomic set A = 
:72, 2 (A) of isomeric molecular graphs. 

lsomeric graphs composed of two vertices and two edges 

V 

X, Y 

(G~) 

in the form of the falnily 

× o Y  (2 

(G~n) (Gr<z) 

? 
(G»~,3) 

X 

(GM4) (G~.L5) 

? ? 
x Y 

(G~~,5) 



V. Kvasni(ka, J. Pospi'chal, Two metrics for a graph 169 

3. Chemica l  d i s t ance  

For the mathematical modelling of organic chemistry, the notion of chemical 
distance was initially introduced by Dugundji and Ugi [8,9]. They defined the 
chemical distance between two molecules (molecular graphs) as the Hamming norm 
of the difference in their adjacency matrices. In our approach [ 1 4 - 1 8 ] ,  based on 
graph theory, this representation of chemical distance cannot be used; an unambigu- 
ous determination of the adjacency matrix requires an indexing of the vertices. 

The notion of chemical distance will be determined for graphs. Its specification 
for molecular graphs is obvious and straightforw, ° t. Let us consider two isomeric 
graphs GI and G2, a common subgraph of these graphs is a graph G which is simultane- 
ously isomorphic to the subgraphs G~ C G 1 and G; C G2, that is, G ~ GI ~ G;.  A 
maximal common subgraph of G~ and G 2, denoted by G 1 N G2, is the common 
subgraph which contains the largest possible number of edges and loops. 

EXAMPLE 3.1 

Consider the following two graphs: 

(G~) (G 2) 

The maximal common subgraph is 

0 = (~- " 

(G I Fl G2 ) 

This graph is isomorphic to two subgraphs of G~ and two subgraphs of G 2 : 

(G'~) (G~') 
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EXAMPLF 3.2 

» ~ is 

The maxilnal common subgraph of  molecular graphs from examples 2.1 and 

= : ~V 3 
V I V 2 

with mapping ~(v~) =H, vo(v2)=C, and ~o(v~)=0. This means, loosely speaking, 
that the maximal common substructure (fragment) of formaldehyde and hydroxy- 
carbene molecules is 

H --C -Õ  

DEI:INITION 3.1 

The chemical distance [19,20] between two isomeric graphs G 1 = (I.~, E 1, L 1 ) 

and G 2 = ( I'~2, E2 L2 ) with maximal commorl subgraph G = G l A G 2 = (V12 , Æ12, LI2 ) 
is given by 

d ( G I , G  2 = [Eil + lE21 + [Lll + I L 2 I -  2 1 E n [ -  21L12 [ " (3.1) 

The chemical distance between a pair of  isomeric graphs corresponds to the 
number of  edges and loops that cannot be matched in the construction of  a maximal 
common subgraph. It enables one to "measure" the similarity (or dissimilarity) of  
two different isomeric graphs: its increasing value indicates that the graphs are more 
dissimilar. We emphasize that the chemical distance for two isomeric molecular graphs 
is determined in a quite similar way to definition 3.1 for graphs. 

I'IXAM PLE 3.3 

Evaluate the chemical distance for G l and G 2 from example 3.1. These graphs 
are isomeric, i.e. [Eil + [Lll = lE21 + [L2I = 6 + 1 = 7. The maximal common sub- 
graph satisfies I E~2 [ = 5 and IL12 [ = 1. Hence, from example 3.1, the chemical distance 
i s d = 2 .  

The chemical distance between molecular graphs of  formaldehyde and 
hydroxycarbene for their maximal common subgraph specified in example 3.2 is d = 4. 

THEOREM 3.1 

The chemical distance d(G~, G 2) for isomeric graphs from the family ~~pq is a 
metric [ 19,20] ,  and the following three properties are satisfied: 

(1) Positive semidefiniteness, 

d (G1,G 2) ~>0 ( = 0 o n l y f o r  G 1 ~ G 2). (3.2a) 
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(2) 

(3) 

Symmetry. 

d(Gl,  G2) = d(G2, G1). 

Triangle inequality, 

d(G1, G2) + d(G 2, G3) ~ d(G l, G3). 

(3.2b) 

(3.2c) 

Th- first two properties of the chemical distance result immediately from 
definition 3.1. The triangle inequality (3.2c) was proved using two different 
approaches [19,20] ;here we present a simplified version of one of them [20]. 

Let us define, for a pair of isomeric graphs G l = (I~q, El, L1) and G 2 
= (V z , E 2 , L 2 ), the following auxiliary function: 

g(G1,G2) = I E I I -  IE121+ILI I -  IL121. (3.3) 

This expresses the number of edges and/or loops that taust be deleted from G 1 to 
obtain a subgraph which is isomorphic to the maximal common subgraph G1 n G2. 
The distance (3.1)is rewritten in a manifestly symmetric form (cf. (3.2b)): 

d(G1, G2) = g(G~, G2) + g(G2, G~). (3.4) 

The following simple properties of the function gare easily proved: 

(1) G 1 D G 2 ~  g(GI,G2) = IE l l+  I L l l -  IE2 I -  IL2I (3.5a) 

(2) g(Ga, G2) = g(Ga, G a n G2) (3.5b) 

(3) G I C G, = g(G I, G2) ~< g(G,, G2) (3.5c) 

(4) G' 2 D G 2 ~ g(G,, G'2) ~< g(G a, G2) (3.5d1 

(5) G 1 C G 2 C G a ~ g(Ga, G2) + g(G2, G3) = g(G1, G3) (3.5e) 

(6) g(G a, G2) ~> g(G1 n G3, G z ) .  (3.5f) 

M1 these relations have a very simple "heuristic" set-theoretical interpretation: 
the graphs G a and G z are interpreted as sets; their maximal common subgraph may 
then be ibrmally expressed as an intersection of "sets" G a and G 2 , 

(3.6) 

Glfl G~ 
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The function g(Gl, G2) is equal to the cardinality of "subset" G ~ -  G l c3 G 2 
(unshaded area in G Z ). This simple set-theoretical approach will be applied to prove 
property (3.5f): its Venn diagram has the form 

G3 

51 

t3 7) 

The function g(G1, G 2 ) is equal to the cardinality of the single- and double- 
shaded area, whereas the function g(G l (3 G3. G 2) is equal to the cardinality of the 
double-shaded area, and thus the inequality (3.5f) is satisfied. 

In order to prove the triangle inequality (3.2c), it is fully sufficient to verify 
the following two independent inequalities: 

g(Gl, G 2) + g(G 2, G 3) -» g(G~, G a (3.8a) 

g(G2, G1) + g(G 3, G2) ~> g(G3, G1 (3.8b) 

Using properties (3.5a f), the left-hand side of (3.8a) is successively rewritten as 
follows: 

g(G 1, G2) + g(G 2, GB) ~> g(Gl, G l A G2) + g(G l (3 G2, G3) 

= g(G1, G 1 (3 G2) + g(G 1 A G2, G 1 Cq G 2 C3 G3) 

= g(G1, G 1 N G 2 A G3) ~> g(Gl, G 1 N G3) 

= g(G1, G 3 ) ,  (3.9) 

where G l N G 2 A G 3 is a maximal common subgraph of G1, G 2 and G 3. The second 
inequality (3.8b) is verified in a similar way. Thus, we have proved the triangle in- 
equality (3.2c). 

We should stress that the chemical distance was defined via the notion of the 
maximal common subgraph. Hence, in order to evaluate the chemical distance 
d (G1, G 2) we have to know their maximal common subgraph G 1 c3 G 2 . McGregor [33] 
has suggested a back-track searching algorithm for the construction of the maximal 
common subgraph of two graphs. His method involves, at worst, N! back-track searches. 
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For molecular graphs, where the vertices are evaluated by chemical symbols, this 
approach could be substantially accelerated by making use of some effective heuristics. 

Ugi et al. [21] have solved the same problem reformulated in the algebraic 
form. Let A~ and A z be the adjacency matrices of the graphs G~ and G 2, respectively: 
the chemical distance between these graphs may then be alternatively defined as: 

d(G1, G2) = min IIA 1 -pTA2PII ,  (3.10) 

where II A [I : Z i <~ j laql is the Hamming norm of the symmetric matrix A = (aq)and 
P is the so-called permutation matrix. Ugi et al. [21] showed that the minimization of 
(3.10) corresponds to an integer programming problem. 

Assuming that the graphs are taken fröre the same family i{]pq Of isomeric 
graphs, then the following theorem is satisfied : 

TI!IORIM 3.2 

The chemical distance d(G~, G 2 ) for G 1, (;2 C n<pq is even and bounded from 
above, 

d(G l , G 2 ) : 2k <~ 2q , (3.11) 

where k = 0, 1 ,2 . . . . .  q. 
Since G 1 : ([q , EI ,LI) ,G 2 = (I/2 , E2,1~~ ) are taken from the sanle f a m i l y ,  «~,'kpq , 

I E l l +  ILII = lE21+ IL21 = q. 

lntroducing this relation into (3.1), we obtain 

d(G1,G2) = 2 ( q - I E 1 2 1 - I / , 1 2 1 ) ,  

as was to be proved. 
For a fixed family ?);pq of isomeric graphs, we construct the so-called 

«¢4 cD Its vertex set is identified with the graph o1" chemical distances, denoted by . p q  . 

family ,(~pq, i.e. each vertex uJ «Jpq corresponds formally to some graph of  the 
family ~~pq.  Two distinct vertices are connected by an edge iff the chemical distance 
between the corresponding graphs is equal to 2. 

EXAMPLE 3.4 

The matrix of  chemical distanees between graphs from the family ~; (see 
' 2 , 2  

example 2.3) is a symmetrie matrix with diagonal entries equal to zero, 
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0 2 4 4 )  
2 0 2 2  

d =  4 2 0 2  

4 2 2 0  

The graph of chemical dislances constructed over the family ~/. contains four 
, 2,2 

vertices and four edges. 

= < G3 

G1 G~ 

We see, for instancc, (hai the chemical distance between graphs G~ and G~ is equal 
(0 twice their graph dislance, where by the term "graph distance" [1] we understand 
the length (number of edges) of a minimal path between the vertices. 

TIt I,iOl ), I.M 3.3 

The chemical distance between graphs from the family :,~pq is equal to twice 
the graph distance between them in the graph ~«jpqCD, 

Let us consider, for simplicity, a pair of graphs G~, G 2 C ;;}pq with chemical 
distance d(G~, G 2) = 4. This means that two edge/loops in G 1 as well as in G 2 should 
be removed to get a subgraph isomorphic to their maximal common subgraph G~ n G 2 . 
Vrom the graphs G~ and G 2 we form another graph, denoted by G 3 E :~t;q' in such a 
way that we shifl an edge/loop (which does not belong to G~ N G 2 but belongs 
either to G~ or to G 2) to a common "area" represented by G~ n G 2. That is, we have 
constructed a graph G 3 C :fpq such that d(G 1, G3) = d(G 2, Ga) = 2. In other words, 
in the family :}pq there should exist a path from G1 to G 2 via the graph G 3. As a 
by-product of these considera(ions is the following theorem. 

Ttt EOR I']M 3.4 

The necessary and sufficient condition for a triple of graphs G~, G 2, G 3 E Jfpq 
that the relation 

d(Gl, G 2) + d(G 2, G3) = d(Gl,  G3) (3.12) 

is fulfilled is that the graph G 2 lies on a minimal path connecting the graphs G a and 
G 3 in ~qCl) . ~ p q .  

This theorem can be understood as an appendage to the triange inequality 
(3.2c) in theorem 3.1. 
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3.1 . R EACTION G RAPH 

The graph-theoretical  approach is able to formulate a simple theory for 
describing chemical reactions [17] .  Le! us consider two graphs G~ = (l.q, El, L~ )and 
G 2 = (V 2, E 2 , L  2) f rom the family , f J ' p q  ~= . We introduce a nonsymmetr ic  relalion 
between these graphs called the chemical tran.2[brmat#m, 

G l = G2 , (3.13) 

where G l (G2) iscalled the educt (l)roducl) graph. Ler G I ¢'1 G 2 be a maximal common  

subgraph of  G 1 and G 2. The graphs may then be expressed as a "union"  of  two 
edge/loop disjoint subgraphs, 

, t t  

G 1 = G' 1 U G 1 (3.14a} 

t tt  

G 2 = G 2 U G 2 (3.14b) 

t t  ~1i 
where the subgraphs G 1 C G l and G2 C G2 are isonlorphic to (;i C3 G2, i.e. 

H tt 
G l -~ G 2 -~ G 1 N G 2. Schematically,  

G1 

G; IG;  ' 
N 

0 2 

{3.15} 

t ~t 
We say that the t ransformation (3 .13)changes  the subgraph G 1 into the subgraph G 2, 

t t  • t t  

whereas the subgraphs G 1 and G 2 isomorphic to G~ c3 G 2 remain intact,  l lence,  the 

t ransformation (3 .13)can  be simptified as follows: 

! 

G I » G 2 , (3.16) 

where we have omi t ted  intact subgraphs of  G 1 and G 2. Let us consider a graph 

G~' 2 = ( = V/, E~, L2) , constructed over the same vertex set as the graph 
¢ !  I # ~ t  t 

G I = (V/, E 1, L1) and ,moreove r ,  isomorphic to G 2, i .e .  G 2 ~ G z. 

DEHNITION 3.2 

The reaction graph [17] G a assigned to the t ransformation (3.16) is an 

ordered 5 - t u p l e  
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= -- "' ~ , 1 - 1  1} )  GI~ (VR I ' l ,  E R,  L i ~ ,  , , 

. t  

LI, ~ = L 1 C) L 2 . 

The mapping ~b "Et~ 

~ ( e )  = +1 

(3.17a) 

(3.17b) 

(3.17c) 

u L R ~ {-1,1} evaluates the edges and loops by integers -+ 1, 

(for c e t:'~) 
~., (3.18) 

( f o r c e  {-z) 

= {-1 (forlEL'~)~, 
B(/) +1 ( fo r /~  L 2) 

(3.19) 

! 

The notion of the reaction graph (assigned to a fixed transformation G 1 ~ G' 2) 
enables us to "algebraicize" the transformation as follows: 

ù ~ '  C'  G l + G R  = G2 ~ '2 • (3.20) 

The binary operation '+ '  is interpreted in the framework ofa set-theoretical formalism 
as the symmetric difference [17] A + B = (A\B)  U ( B \ A ) ,  

A + B = { x : ( x ~ A / x x ~ ê B ) v ( x ~ A A x ~  B ) } .  (3.21) 

Applying this operation, the edge and loop sets of G2 are 

* '  ~' ~ '  ' ( 3 . 2 2 )  t ;2  = E l  + E R ,  I '2  = L1 + L g  • 

In the reaction graph G R , those edges/loops that are cancelled (forlned) are evaluated 
by -1 (+1). 

DVI:INITION 3.3 

! t t t 

Tworeaction graphs Gp, = (I/~~, ER, Lp,, 4, { -1 ,1} )  and G R = (VR, ER, LR, ~', 
{-1,  1} ) are isomoq)hic iff there exists such a one-to-one mapping co: I~]~ -+ F~ that 

t ! 
induces two one-to-one mappmgs X ER -+ ER and X" LR -+ Lg that conserve the 
incidences of edges and loops and their evaluation by + 1. 

Let us consider two pairs G~, G 2 and G 3, G 4 of graphs, both taken flora the 
same family ?~pq of isomeric graphs. The graphs are related by two chemical trans- 
formations 
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G 1 =* G 2, G 3 » G 4 . (3.23) 

Applying the above theory, we assign to these transformations the reaction graphs 
! 

G R and GR, respectively. If the reaction graphs are isomorphic, then we say that the 
chemical transformations (3.23) are described by the same reaction pattern uniquely 
represented (up to the isomorphism) by a reaction graph. This property substantially 
increases the effectiveness of reaction graphs as a tool for classifying chemical reactions 
in organic chemistry. In particular, thousands of  generic and named organic reactions 
are represented by just a few dozen reaction graphs. 

VXAMPLV 3.6 

The Eschenmoser fragmentation [34] of 1,9-epoxy-2-diazo-10-methyl 
[4,4,0] bicyclodecane is 

® _Ö 
N = N  I01 

+ I N ~ N I  

Removing the intact "environment", we get the basic skeleton of the fragmentation 

I0_2 I01 

graphically represented by 

÷ + I N ~ _ N I  

Next, we remove untouched edges and loops, 

> u O u ~ ,  ~. I u o  u ? 
(G;) (G~) 

Unifying the two sides of this pattern in a reaction graph, we arrive at a graph-theoretical 
representation of the Eschenmoser fragmentation 

÷ 
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The reaction graph G R assigned to the chemical transformation (3.13) is simply 
related to the chemical distance between its entries G~ and G 2 . 

THEOREM 3.5 

The chemical distance between two isomeric graphs that are related by a 
chemical transformation GI ~ G 2 with assigned reaction graph G R is determined b y  

d(G I ,G  z) = I E R I + I L R I .  (3.24 

This theorem immediately follows Dom definition 3.2 of the reaction graph and, 
moreover, it has a very interesting chemical interpretation. One of the first heuristic rules 
of organic chemistry is the so-called principle o.[minimal structural change [35,36]. 
This states that in the course of a chemical transformation G~ ~ G 2, the minimal 
number of edges/loops is created and/or annihilated in the educt graph G~ to form 
the product graph G 2. It implies that a reaction graph G R assigned to the chemical 
transformation should be minimal with respect to the number of its edges and loops. 

I E R I + I L R I =  min.  (3.25) 

This requirement is automatically satisfied due to the definition of the reaction 
graph based on the notion of a maximal common subgraph. Ugi et al. [8,21] sum- 
marized the above property at the principle oJminimal chemical distance as a very 
effective heuristic rule for the construction of reaction matrices. 

4. Reaction distance 

In the preceding section we have constructed the reaction graph G R for a 
chemical transformation G~ ~ G 2 on the basis of the maximal common subgraph 
G 1 n G 2 . There exists an alternative possibility [31,32] for constructing this reaction 
graph, namely, to require that the chemical transformation is composed of a minimal 
number of the so-called elementary chemical transformations (of simply, elementary 
transformations), the number of which determines a reaction distance between the 
graphs Gx and G 2 , and this distance induces a new metric for a fixed family ofisomeric 
graphs. 

Let us study the graph G = (V, E, L) taken from the family ,':Ppq. '~ We shall 
inlroduce two types of elementary transformations of the educt graph G into a 
product graph G' = (V, E', L') with the same correspondence to the family ,z • ! P p q .  

(1) The graph G contains the edge [ui, uj]. The elementary chemical trans- 
formation o~ij "dissociates" the edge [ui, vj] on a loop [vi, ui], schematically 
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(4.la) 

The resulting product graph G', isomorphic to a graph from the family ~~pq, has 
edge and loop sets determined as follows: 

(4.1b) 

(2) The graph G contains the loop [Oi, Vl]. The elementar), chemical trans- 
fi)rmation /3ij "associates" the loop [vi, vi] on an edge [vi, vj], schematically 

,4 ü v~ 
[vj 

(4.2a) 

The resulting product graph G', isomorphic to a graph from the family ~y, pq, has 
edge and loop sets determined as follows: 

E,-- E ~ {~o,,~,1}, L,--L -{~~,,o,1} (4.2b) 

The elementary transformation /3ii may be formally treated as a retrotransformation 
with respect to the elementary tranformation oLji. 

The two types of elementary transformations introduced above are simply 
visualized by the following reaction graphs: 

. k/ (elementary transformation ~ii) v i vj 
(4.3a) 

÷ 

-- (elementary transformation/3q) (4.3b) v, v~ 

Hence, the chemical distance between G and G' for an arbitrary elementary trans- 
formation is d(G, G') = 2. A reverse property is not obeyed; d(G, G') = 2 does not 
imply that there exists an elementary transformation ~ = o~,/3 such that G ~, G'. 

In a similar way as was done in section 3, we construct for a fixed family :Ypq 
of isomeric graphs the so-called graph of  reaction distances, denoted by ~~pRqD. Its 
vertex set is again identified with the family ~pq. Two distinct vertices (corresponding 
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to nonisomorphic graphs G, G 'E  '~ )are connected by an edge if there exists an 'pq 
elementary transformation ~ = c~,/3 such that G =~ G'. 

EXAMPLI:~ 4.1 

Let us study the graphs from i~2, 2 (cf. example 2.3). For the following pairs 
of graphs there exist elementary transformations such that a member of the given 
pair is transformed into the other member of the same pair, 

eL21 

VI~ ~ l l V ~  ~. ~ 2 Vl V2 
(G' I ) (G 2) 

9 {/'21 ~v 
- = " , .  • V 2 V1 V2 1 

(G 2) {G 3} 

9 : "~,.9 9 
V1 V 2 V 1 V 2 

(G 2) (G~) 

For the other remaining possible pairs of graphs f r o m  )t~2,2 there do not ex_ist such 
elementary transformations. The graph of reaction distances constructed over the 
family '~ is 

• 2,2 

G i Gz~N% G~ 

DI I:IN1TION 4.1 

The reaction distance between two graphs G, G' E :~ßpq, denoted by D(G G'), 
is equal to the graph distance between them in the graph ~pqRD. 

EXAMPLE 4.2 

The matrix D = (D(G;, G;)) of the reaction distance between graphs from . 2,2 

can be simply constructed from the <,(j-~,~' presented in example 4.1, 

0 1 2 2 )  
1 0 1 1  

D =  2 1 0 2  
2 1 2 0  
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The chemical transformation G~ ~ G 3 may be decomposed into two elementary 
transformations with an "intermediate" corresponding to the graph G 2 , 

v 1 
2 Vl V 2 V 2 

(G1) (G 2) {G3} 

This means that the reaction distance between G~ and G a is D(G 1, G 2) = 2, in 
R D  accordance with the graph .(j 2,2 presented in example 4.1. The graph distance between 

vertices 1 and 3 is equal to 2. 

THEOREM 4.1 

The reaction distance D(G~, G 2 ) is a metHc and the following three properties 
are satisfied: 

(i) Positive semidefiniteness 

D(G1, G 2) >~0 ( = 0 o n l y f o r G  1 ~ G 2) .  (4.4a) 

(ii) Symmetry 

D(G1, G 2) = D(G2, G 1). (4.4b) 

(iii) Triangle inequality 

D(G 1, G 2) + D(G 2, G 3) >~ D(G1, G3) • (4.4c) 

The equality holds iff the graph G z lies on the minimal path from G 1 to G 3 in «~ aD ,:J p q  • 

All these properties immediately follow from the definition ofreact ion distance 
as a graph distance in the graph ~~RD , ~ p q  . 
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4.1. 

graphs 

ILLUSTRAT1VE EXAMPLE 

The above theory will be illustrated for the family ,7,3,3 composed of fourteen 

(Gd (G 2) (G3) 

? ; .  < > ? V ? V ~ »  
(G~) (G~) (G?) (G 8) 

~-~-. ~~.  ) .  
(G 9 ) (Glo) (G11 ) 

C~ 
(0~3) (Gi 4 ) 

(G~?) 

(4.5) 

Let us consider, for instance, the graph G~. We apply all admissible elementary trans- 
formations, 

'-. ~ (~Ge) 

~~~<2> ~> (-%1 

_-. • ( - G B) 

« aD (assigned to G1) is adjacent to the This means that in the graph ~3,3, the vertex vl . 
vertices u2, u3, u6, and us. Applying a similar procedure for all graphs from the family 
' 3,3, we arrive at the following graph of reaction distances 
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3 

1 

8 13 

(4.6) 

F r o m  this graph one may simply construct reaction distances between all graphs 
from !J: e.g. D(G~ G14) = 5. Let us study the chemical transformation G:: ~ G14. 

• 3 , 3 '  1, 
R D  In accordance with the graph 63,3, we obtain the following pattern: 

G5 

/ /  "-G 
J 

G.. , > G.~ ....... » G 3 ~,~ (4.7a) 
( E D U C T )  

G 

B9 

It will be much more instructive if the symbols are replaced by their diagrammatic 
representations" 

~:> " ,x~  O -_ 

« " = ~ =  : Z / 2  : . ? _- ; = = : . _  ",,~ _ ~ . J  / 
" ~ ?  ~ . 

(4.7b) 

The decomposition of GI: ~ G14 into five elementary transformations is 

G:l ~ G13 ~ Ga ~ G1 ~ G2 ~ GI4 

Gll =~ G:3 ~ G3 ~ G1 ~ G2 ~ G14 

GI: ~ G13 ~ Glz ~ Glo ~ Gz ~ GI4 

Gll ~ Gl3 ~ G:z ~ G9 ~ G2 ~ GI4 • 
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Applying chemical terminology, the transformation G~~ ~ Gl4 has four different 
mechanisms manifested by the sequences of  elementary transformatiolls c~ and ~. The 
reaction graph corresponding to all four mechanisms is 

2 

The same reaction graph is obtained on the basis of  the maximal common subgraph. 

We can analyze the transformation G 4 ~ Glo in the same way. The reaction 
distance is D(G 4, Glo) = 4 and the assigned pattern of  elementary transformation is 

G13 

0 4 . . . . . . . . .  » G 8 . . . .  » G 9 . ' - . i t  
B1 

01o (4.8a) 

diagrammatically 

x N ~ ~ _  J 0 

J 

(4.8b) 

The possible mechanisms for G 4 ~ G~o are 

G4 =*" Ga ~ G13 ~ G12 ~ Glo 

G4 ~ G8 ~ G9 =t;. G12 ~ Glo 

G4 » G8 » G9 ~ G2 ~ Glo 

G4 ~ G8 ~ G, ~ G2 ~ Glo • 
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The reaction graph of G 4 ~ G l 0 ,  constructed on the basis of the maximal common 
subgraph G 4 C3 Gin, is 

<>~ 
+ 

with a chemical distance d(G 4, Glo) = 4. The reaction graph constructed on the basis 
of the above mechanisms is 

+ 

which does not correspond to the mentioned chemical distance d(G4, G l o )  = 4. We 
emphasize that the reaction graph constructed on the basis of the maximal common 
subgraph is decomposed into six elementary transformations, the result of which 
again is not compatible with the reaction distance D(G4, Gin) = 4. Summarizing 

l ~  • • t l  these observations, the chemical and reaction distances are not lsometrlc , there- 
fore they may provide different reaction graphs. 

4.2. BILATERAL APPROACH FOR EVALUATION OF REACT1ON DISTANCE 

The chemical distance between two isomeric graphs was defined with the 
help of their maximal common subgraph. This definition makes it possible, in principle, 
to evaluate the chemical distances for an arbitrary pair of  isomeric graphs. The 
reaction distance is defined as the graph distance in the graph of reaction distances. 
Therefore, in order to evaluate the reaction distance we have to know in advance 
the graph of reaction distances for a given family of isomeric graphs. Unfortunately, 
its explicit construction is possible only for relatively small families o f  (~pq, i.e. for 
small values of the integers p and q (e.g. for p, q >~ 10, a construction of the graph 
«~RD is a hopeless task). Therefore, it is very important to have an approach which ~pq 
does not require a knowledge of the whole graph of reaction distances but only a 
part of it, i.e. the subgraph which contains all the minimal paths for a preselected 
pair of graphs from 'i~pq. Recently, Ugi and Fontain [37] suggested the so-called 
bilateral approach for the construction of all possible minimal paths between a fixed 
pair of graphs. We shall generalize this approach for the evaluation of reaction distances. 

Let G 1 = ([ '~ ,E1,LI)  and G 2 = (V2,E2, Lz) be a pair of graphs from the 
family f~pq. If these graphs are isomorphic, then their reaction distance is equal to 
zero, D(G1, G z) = 0 (cf. eq. (4.4a)). Therefore, we shall assume that the graphs G 1 
and G z are nonisomorphic. Let us construct the left and right sets of graphs £o = { Ga } 
and 6~ o = {Gz}. The graph G 1 E 2o is transformed by all admissible elementary 
transformations ~ = a,/3, and a new left set £1 is formed from all the nonisomorphic 
resulting graphs produced. In the kth step (if k ~> 2), the left set £~ is formed only 
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ffom those graphs that are nonisomorphic with the graphs from £k-2- In a completely 
similar way, the right sets 6~ 0 , 62~, 6~2, • • •, 6~ tare formed. Schematically 

,_d 
Oel Z2 ~2 

Let us assume that we have constructed the sets £k and 6~ 1 (where either k = l or 
l-+ 1). If these sets contain graphs that are isomorphic, formally £k C~ 6~ t :/= O, 
schematically 

~ 0 . R  ~ 

~k 

then the reaction distance is d(G~, G 2) = k + l. If this is not the case, we continue 
the process of construction of new left and right sets of graphs. 

This bilateral approach for the evaluation of the reaction distance may be 
summarized in the form of the following algorithm. 

ALGORITHM 4.1 

Step 1. (Initialization). Input of graphs G 1 and G2; 

k : = l : = 0 ;  £o:={G~}; 6~o:={G2}; 

Step 2. k : = k + l ;  

£k:= {nonisomorphic graphs constructed by elementary transformations of 
the graphs from £k- 1 } ; 

if k >/2,  then £k:= £k -{g raphs  isomorphic with graphs from £k-2}; 
i f £  k (3 ~l 4: ¢), then go to step 4, 
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Step 3. l = l +  1; 

Bt := {nonisomorphic graphs constructed by elementary transformations of 
the graphs from ~R t_ 1 ; 

if l >~ 2, then ~R z := 6~ t - graphs isomorphic with graphs from ~t-2 } : 
if £k N 6~ t 4= O, then go to step 4, else go to step 2; 

Step 4. Reaction distance := k + l; 

Step 5. End ofalgorithm. 

As a by-product of this bilateral approach for the evaluation of reaction 
distances between isomeric graphs G~ and G2, is the possibility to construct from 
the sets £o, 21 . . . .  ,£k and 6~o, ~1 . . . .  ,6~ t all possible mechanisms of the chemical 
transformation G x ~ G 2 (or retrotransformation G 2 ~ G 1). 

EXAMPLE 4.3 

Apply the algorithm 4.1 for the evaluation of reaction distance between 
graphs G 4 and Glo from example 4.1. 

Step 1. 

Step 2. 

Step 3. 

Step 2. 

Step 3. 

Step 4. 

k : = 0 ,  / : = 0 ,  2 o:={G4},  ~0 :={Glo}- 

k := 1, 2 x := {G8}, 21 A 6~ 0 = Q. 

/:= 1, ~1 := lG2, G12}, £1 ('1 ~1 = (~)- 

k := 2, 22 : = { G 1, G9, GI3 }, 2 2 0  ~1 = (l)- 

/ := 2, 6~ 2 := lG1, G s, G9, GI3 , G14}, £2 ('1 ~2 = {GI, G9, G13} @ (~)- 

D(G4, Glo):= 2 + 2. 

Schematically, the above succession of steps can be illustrated by 

~0 

~2 

From this scheme one can simply construct all possible mechanisms of the trans- 
formations G4 ~ Glo (cf. eqs. (4 .%-d) ) .  
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4.3. CONSTRUCTION OF' PREDI CESSORS AND SUCCESSORS FOR A GRAPH 

A simple modification of the bilateral approach for the evaluation of reaction 
distances provides the so-called monolareral approach for the construction of all 
possible successors or predecessors for a given graph. Let G = (V, E, L) E :~pq be a 
fixed graph. Successive applications of admissible elementary transformations c~ and/or 
/3 give all possible graphs (successors) with unit reaction distance from the graph G. 
From the first set of graphs (successors) we construct the next graphs, which are 
classified as successors of successors: their reaction distance from the graph G is 2. 
This recurrent process is continued until the prescribed reaction distance between 
G and its constructed successors is achieved. If we change the elementary transforma- 
tions used to the corresponding retrotransformations, then the above procedure 
gives all predecessors of the given graph G with reaction distances bounded from 
above by the prescribed maximal reaction distance. 

Let us turn our attention to a precise formulation of the monolateral approach 
for the construction of successors of the fixed graph G. First, we construct the set 
fJ0 ={G0}. Applying all admissible elementary transformations ~ and/or /3, we 
construct from the graph G all its first successors; their nonisomorphic representatives 
form the set (J~. From the graphs of 5J;1, we construct by all admissible elementary 
transformations the next set !f'2, where this set does not contain the graphs isomorphic 
with graphs from 'f0.  This procedure is continued until we achieve the set (fkmax, 
where kma x is the prescribed maximal reaction distance. The graphs from !Ji have the 
reaction distance i from the starting graph G. 

ALGORITttM 4.2 

Step 1. (Initialization). Input of graph G, kmax; 

k : = 0 :  «J:= G : 

Step2.  k :=  k +1;  

2c.k := {nonisomorphic graphs constructed by elementary transformations of 
the graphs from ';R k_ 1 } : 

if k ~> 2, then ~.J,Æ := J k  - {graphs isomorphic with graphs from ,cj,Æ_ 2 }; 

Step 3. If k < kmax, then go to step 2. 

Step 4. End of algorithm. 

The method of constructing all possible successors of the given graph G with 
the specified maximum reaction distance is schematically illustrated as follows: 
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I.* 

I;XAMPLI'I 4.4 

Construct all possible successors of  the graph G4 from (4.5) in the framework 
of  the whole family ?~-3,3. Successive applications of  admissible elementary trans- 
formations to the graph G 4 provide 

In this case, kma x = 5 and we have constructed all possible successors of  the graph 
G 4 in the family i~:3, 3. For instance, the graph G 4 has a successor G11, where 
D(G 4, Gll ) = 3; decomposit ion of  the transformation G« ~ Gll into a sequence of  
elementary transformations gives 

G4 ~ G8 = G13 ~ G11 . 

Reversing the procedure,  we get anoIher scheme of all possible predecessors of  G 4 in 
the whole family • 

• 3 , 3 "  
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For instance, the graph G 4 may be "prepared" from the graph GI~ by the following 
sequence of elementary transformations: 

Gll ~ Gl3 ~ Ga ~ G4 . 

5. Discussion 

We have elaborated the graph-theoretical model of organic chemistry. This 
model is based on the concept ofa  molecular graph (a pseudomultigraph with vertices 
evaluated by the atomic symbols). Two different distances between the graphs were 
defined: both these distances induce a metric over the family , ~ 'bpq ofisomeric graphs. 
First, the chemical distance based on the maximal common subgraph is closely related 
to Ugi et al.'s [8,9] matrix model of organic chemistry and their principle of minimal 
chemical distance. The resulting reaction graph assigned to the chemical transformation 
G ~ G' is composed of a minimal number of edges and/or loops. Second, the reaction 
distance provides a very efficient method for the construction of mechanisms of 
chemical transformations. Unfortunately, these metrics are not "isometric", and 
therefore the reaction graphs constructed by making use of them may be, in general, 
different. The suggested graph-theoretical model of organic chemistry gives a very 
simple and transparent theoretical tool for the formal simulation of the organic 
chemistry in which all irrelevant details and exclusions are suppressed at minimum. 
It offers formal notions and concepts for an unambiguous description of computer 
algorithms for organic synthesis design based on the mechanisms of chemical reactions 
(the so-called second-generation programs, cf. ref. [8] ). 

A deep gap between out formal look at chemical reactions and their physical 
content based on the topology of potential surfaces may be abridged, likely, by an 
approach of Mezey [38,39]. He started, as was mentioned, from the potential surface 
of a molecular system (in general, this is the same for all isomeric molecules). The 
topology of the potential surface determines (its minima, maxima, and saddle points) 
the so-called reaction network. This concept is closely related to our graph of chemical 
and/or reaction distances, and determines possible reaction products (intermediates) 
that are neighbouring the preselected educt molecular structure on the potential 
surface. 
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